MKTG 8930-001
ADVANCED RESEARCH METHODOLOGY
Spring Semester 2010
1:00-4:00pm, FCB 361

Professor: Dr. Dan L. Sherrell
Office: FEC 150
Phone: 678-4552
E-mail: dsherrell@memphis.edu
Office Hours: 10:00-11:30pm, W
Other times by appointment

Course Description & Objectives
This course is intended for doctoral students learning to design and conduct independent, empirical research for publication in scholarly journals. MKTG 8930 is designed to cover a variety of research issues using a seminar format. This course will focus specifically on the topics of validity issues; research design; statistical experimental design; and measurement scale development/analysis. Students will be provided with the opportunity to gain experience in each of these topic areas through individual discussion, homework, and class presentation. Individuals completing this course should possess the training to conduct independent research concerning relevant conceptual questions of interest to their particular disciplines.

Course Instructional Materials
Text:

The other assigned materials for this course will consist of articles from the research literature in several disciplines. Students will be responsible for acquiring; reading; assimilating; and coming to class meetings prepared to discuss and critique these materials.

There will be a set of reading materials assigned prior to discussion of each course topic. These reading assignments are by no means exhaustive and students are encouraged to identify, analyze and bring to class additional materials that may help illustrate our discussions on each topic. The course instructional pedagogy is build around a seminar format. This means discussion and analysis are the primary vehicles through which meaning and understanding of the assigned topics will be developed. These activities require participation by all students in every class meeting. Come to class prepared to engage in discussion of the assigned materials.

Here are a couple of textbooks that contain relevant materials on some of the topics we will be discussing this semester. These books are not required for the course, but may prove helpful to you in preparation for your comprehensive exams and for answering future research questions:
Course Grading
Each student’s performance in this course will be evaluated on the basis of completed assignments; class participation; an individual research proposal; and a final exam. Questions for the final exam will be drawn from the assigned reading materials and class discussion over the assigned topics. The following grading system will be used to compute the final course grade for each student:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA analysis assignment</td>
<td>10%</td>
</tr>
<tr>
<td>Research design assignment #1</td>
<td>10%</td>
</tr>
<tr>
<td>Research design assignment #2</td>
<td>10%</td>
</tr>
<tr>
<td>Scale development assignment</td>
<td>20%</td>
</tr>
<tr>
<td>Individual research proposal</td>
<td>25%</td>
</tr>
<tr>
<td>Final exam</td>
<td>20%</td>
</tr>
<tr>
<td>Class participation</td>
<td>5%</td>
</tr>
<tr>
<td>Total:</td>
<td>100%</td>
</tr>
</tbody>
</table>

The individual assignments will consist of specific tasks to be completed and handed in at the assigned times (see class topic schedule). Students will be asked to:

(a) conduct a thorough ANOVA analysis with a supplied dataset and write a brief report describing the results;

(b) develop a research study from a supplied research scenario, including hypotheses to be tested; a description of the statistical analysis plan to be utilized; specification of the dummy tables that would be used to display analysis results; and a brief description of the administration of the methodological procedures to be followed;

(c) develop a second research study from a different supplied research scenario, including hypotheses to be tested; a description of the statistical analysis plan to be utilized; specification of the dummy tables that would be used to display analysis results; and a brief description of the administration of the methodological procedures to be followed;

(d) develop a multi-item scale to measure an unobservable construct of their choosing; collect student responses to this scale and an additional, related construct presumed to correlate with the first unobservable construct, analyze the collected data to determine the psychometric properties of the scale; and write a brief description of the results;
(e) develop and complete a thorough research proposal addressing a topic of interest in their discipline. The details of the individual research proposal assignment are discussed below; and

(f) complete a final exam composed of broad-scale, discussion/essay questions designed specifically to mirror the type of questions typically included on Ph.D. comprehensive exams. The final exam experience will be administered at the scheduled time and date during the final exam period at the end of the semester.

In addition, students will be assigned particular research articles to read, analyze and be prepared to lead a discussion in class concerning the article. Students will be responsible for submitting 2-3 discussion questions relevant to their assigned article to the rest of the class and the instructor at least 24 hours prior to their assigned discussion in class. These questions will be used to help guide the class discussion. These article discussions will form the major basis for each students’ class participation grade.

Individual Research Proposal

Each student will be expected to develop and complete a thorough research proposal addressing a topic of interest and relevance to them in their chosen discipline. The research proposal should:

(g) Specify a research question that addresses an issue of interest in the student’s chosen discipline;

(h) Contain a conceptual model describing how that research question is to be investigated;

(i) Describe *in detail* how the conceptual model will be operationalized and what specific research hypotheses will be tested;

(j) Contain a thorough description of the planned data collection procedures, including completed development of the data collection instrument;

(k) Specify how the collected data will be analyzed and what specific aspects of the analysis results will be used to test the stated research hypotheses (including the specification of dummy tables to be used to display the analysis results); and

(l) Describe why the potential results should make a contribution to the existing research literature on the topic.

The research proposal should be prepared in a professional manner in terms of appearance and adherence to the accepted style of the leading journals in the student’s chosen discipline. Students will be asked to prepare a 30 minute powerpoint presentation summarizing their research proposal and to deliver that presentation in class during the last class meeting of the semester.

The individual research proposal will be judged according to the quality of the research design and the operationalization described in the paper and presented in the student’s class presentation. The conceptual development of the research question is an important part of the assignment, but the majority of the emphasis in evaluation will be put on the research design and operationalization.
MKTG 8930
Course Schedule and Reading Assignments
Spring Semester, 2010

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>Introduction; syllabus</td>
<td></td>
</tr>
<tr>
<td>1/27</td>
<td>Validity ; Experimental design principles</td>
<td>SCC – ch. 1-3; readings</td>
</tr>
<tr>
<td>2/03</td>
<td>Experimental design principles</td>
<td>SSC – ch. 4-6, 8; readings</td>
</tr>
<tr>
<td>2/10</td>
<td>ANOVA principles</td>
<td>ANOVA ch. handouts</td>
</tr>
<tr>
<td>2/17</td>
<td>ANOVA principles (alt. class meeting needed); Topic for research proposal approved by instructor</td>
<td>ANOVA ch. Handouts</td>
</tr>
<tr>
<td>2/24</td>
<td>Scale development</td>
<td>readings</td>
</tr>
<tr>
<td>3/03</td>
<td>Reflective / Formative measures; ANOVA assignment due</td>
<td>readings</td>
</tr>
<tr>
<td>3/10</td>
<td>Spring break</td>
<td></td>
</tr>
<tr>
<td>3/17</td>
<td>Modeling basics -1; Research design assignment #1 due</td>
<td>readings</td>
</tr>
<tr>
<td>3/24</td>
<td>Modeling basics -2; draft of conceptual model; hypotheses for research proposal submitted to instructor for comment</td>
<td>readings</td>
</tr>
<tr>
<td>3/31</td>
<td>Misc. Elements in Methodology; Research design #2 due</td>
<td>readings</td>
</tr>
<tr>
<td>4/07</td>
<td>Project workshop</td>
<td>readings</td>
</tr>
<tr>
<td>4/14</td>
<td>Article critiques; Scale development assignment due</td>
<td>readings</td>
</tr>
<tr>
<td>4/21</td>
<td>Article critiques</td>
<td>Articles</td>
</tr>
<tr>
<td>4/28</td>
<td>Research proposal presentations; papers due in class</td>
<td>Articles</td>
</tr>
<tr>
<td>5/05</td>
<td>Final exam – 1:00 – 3:00pm</td>
<td></td>
</tr>
</tbody>
</table>

Readings

These assigned readings are intended to form the basis of the class presentations. However, the students are encouraged to go beyond these materials to include other sources that may make their presentations more effective. Unless specifically noted on schedule, readings will be available in .pdf format on course website and on the instructor’s umdrive/public directory.

1/20 – Class Introduction

1/27 – Validity & Experimental Design principles

2/03 – Experimental Design principles

2/10 – ANOVA Principles – Between Subjects Designs

2/17* - ANOVA Principles – Within Subjects Designs (*alternative class meeting needed*)

2/24 – Scale Development

3/03 – Reflective/Formative Measures

3/10 – Spring Break

3/17 – Modeling Basics – 1

3/24 – Modeling Basics -2

3/31 – Misc. Issues

4/07 – Project Workshop

4/14 – Article Critiques
Articles TBA

4/21 – Article Critiques
Articles TBA

4/28 – Individual Research Proposal Presentations

5/05 – Final Exam; 1:00-3:00pm; FCB – 361